.33
5.1 资产定价模型的选取.............................33
5.1.1 Fama-French 三因子模型(FF3 模型)..........................33
5.1.2 CH 三因子模型..............................33
5 实证研究
5.1 资产定价模型的选取
目前许多关于国内股市的研究都使用了 FF3 模型,但是该模型是根据 Fama和 French(1993)的方法对美国市场建立的,中国的政治和经济环境也与美国以及其他发达国家大不相同,仅仅把适用于美国的模型用于中国市场是有问题的,然而,考虑到中国的经济和金融体系的许多差异,我们在中国探索因子模型,用其特有的环境决定它的方法。规模和价值是中国股市的重要因素。然而,如果能很好地把握这些因素,人们就不会简单地重复使用使用于美国的 FF 三因子模型了。而在本文中使用的是 Jianan Liu 等人(2019)提出的 CH-3 模型,它包含了规模、价值和市场因素。首先,由于与美国小型上市公司不同,中国严格的 IPO限制,导致中国小型股票的回报率会受到反向收购中成为空壳的公司的严重影响。为了避免这种影响,在构建因子之前,我们删除了末尾 30%的股票,以避免他们受到壳价的影响,然后利用剩余的股票来构建因子。其次,将基于 EP 构建价值因子。具体来说,本文将剩下的 70%的上市公司分为两组,小规模(S)和大规模(B),按照市场价值的中位数进行分割。再将这些股票分成两个 EP(earnings-priceratio)组:top 50%(value,V)和 bottom50%(growth,G)。然后,按照两种分类方式进行交叉组合最终成为四个组合:SV、SG、BV 和 BG(下文中具体展开)。6 结论与展望
6.1 结论
我国的资本市场仍然处在极速发展的过程中,对于发展中的资本市场而言,投资者如何做好投资组合的选择,从而最大程度地回避风险并且获得预期收益,一直以来都是他们最为关心的问题。以股市为例,传统金融学表明市场是有效的,人们可以了解到有助于决策的所有信息。但现实情况确是,大量的个人投资者由于有限的精力和信息不对称等情况,无法对公司的所有信息判断准确,自然也就无法作出更加准确的投资决策。这个问题在互联网时代变得更加严峻,因为投资者之间的情绪传递变得更快,由此形成的舆论风波更容易导致投资者之间出现羊群效应,传导至市场便会导致公司的股价收益率频繁无预期的波动,这既会对公司的正常经营产生干扰,也不利于保护投资者的收益。因此,如何能够更加准确有效地预测股票收益的波动情况,同时找出不同因素对其的影响程度,为企业和投资人找到解决问题的方法,便就成为了金融学研究亟待解决的问题。
本文从如何准确预测股票收益率变化的角度出发,在传统金融学理论的基础之上,结合互联网发展对市场参与主体产生的影响,试图去解决两个问题:其一是基于互联网平台所形成的投资者情绪指标,是否会对股票的预期收益率造成影响,具体会对哪类公司产生影响。其二是对比传统金融学的资产定价 FF3 模型与CH-3 模型对于股票收益率预测的准确度,进一步纳入投资者情绪变量 sent 对三因子模型进行优化。全文采用提出-分析-解决问题的思路,进行了一系列的研究,并得到如下的结论:
(1)我们探讨了投资者情绪与股票收益率之间的关系,发现投资者情绪对于股票市场收益率存在显著的正向影响关系。具体地:当投资者的正面倾向越强烈时,企业的预期股票收益率就越高,此时合理的解释是,投资者的情绪是投资行为的驱动力,当投资者对于企业或市场抱有乐观的态度,便更有可能对所持资产组合进行追加投资。而当投资者对股票的市场表现以及公司行为持负面态度时,股票的预期收益会出现下降趋势,而这种负面影响在互联网背景下有扩大的趋势,原因在于每个投资者都是风险厌恶的,尤其在有限关注的情况下,容易因为某个负面消息做出巨大的反应,例如集中性抛售公司股票,从而给股票带来贬值压力,股票的预期收益也随之下降。在本文的 CH-4 模型中,我们发现投资者情绪因子只对小规模的上市公司的收益率造成影响,这里可能的解释是,小规模上市公司由于其本身的规模较小,对市场风险的反应能力更弱,所以在投资者情绪发生变动时,股票预期收益率的变动也会随之变得越来越大。
(2)相较于 FF3 模型,CH-3 模型在研究规模因子、价值因子与股票市场收益率之间的关系时拥有更高的精准度,相较于 CH-3 模型,优化后的 CH-4 模型在预测投资者情绪与股票市场收益率的关系时拥有更高的精准度;我们对传统的 FF3 模型和 CH-3 模型针对股票市场收益的影响预测精准度进行研究,这两个模型的区别在于 CH-3 模型中对价值因子指标由账面价值替换成市盈率的倒数,同时 CH-3 中的规模因子剔除了市值最小的 30%的公司,我们发现 CH-3 模型相较于 FF 模型在预测中有更高的可决系数,说明 CH-3 模型在预测国内市场的股票收益率时,比 FF 模型具有更高的解释性。在验证了 CH-3 模型的解释性后,本文将构造出的 Sent 变量作为新的情绪因子纳入到模型中,回归结果显示情绪因子对于股票市场收益率同样具有影响作用,此时已有的 CH-3 模型得到了优化,我们得到了新的资产定价模型 CH-4 模型,模型中包含市场、规模、价值和情绪四个影响因子。
参考文献(略)